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I. Introduction 
1) Topic and Purpose of Research                                  
Differential privacy is a method that helps preserve the privacy of users, more specifically, allowing the 
data to be analyzed without leaking users’ sensitive information. Privacy is guaranteed by having the 
central server, which has access to all the users’ data, add noise to the data when releasing the data for 
analytics. However, when differential privacy is implemented, the users may not trust the central server 
and may be reluctant to send their personal data. Local differential privacy (LDP) on the other hand 
ensures users’ privacy by having each user send his/her data with noise added. Then, not even the central 
server has access to the ground truth data and must rely on noisy data. For example, in case of LDP on 
users' height data (Figure 1), the analyzer cannot have precise knowledge of each user’s data but may 
guess the average height accurately with many users. 

 

Figure 1: An example of local differential privacy 

LDP can be used to analyze decentralized social networks such as epidemic networks. For example, 
with the advent of COVID19 in 2020, we could have used our limited supply of vaccines to minimize 
the spread of the disease by analyzing the graph structure of the epidemic network. The next time there 
is an epidemic outbreak, it would be much better to survey the local citizens on who they usually meet 
face-to-face, spot the potential “super-spreaders” using metrics that quantify node importance such as 
coreness, and utilize the limited supply of vaccines based on the analysis. However, citizens may not 
be fully honest when conducting the survey in fear of leaking sensitive personal information. 

In this paper, we propose a new LDP mechanism for decentralized graphs such that node coreness is 
preserved with strong privacy guarantees. 

 

 

 

II. Main Subject 
1) Research Planning                                              
Let an adjacency vector denote the vector with the value 1 (value 0) as the i-th element when the i-th 
corresponding neighbor is connected (is not connected). 



 

 

For example, the adjacency vector for user 4 in Figure 2 can be expressed as 𝜸𝟒 = (1, 1, 1, 0, 0). 

 

Figure 2: A sample graph 

The degree of a node denotes the number of connected neighbors it has. For example, the degree of 
user 4 in Figure 2 is 3. 

A randomized mechanism ℳ satisfies 𝜖-edge LDP if and only if for any two adjacency vectors 𝛾 and 
𝛾′ that only differ in one bit, and for any 𝒔 ∈ range(ℳ), we have 

Pr	[ℳ(𝜸) = 𝑠]
Pr	[ℳ(𝜸") = 𝑠]

≤ 𝑒# 

where 𝜖 ≥ 0	 implies the privacy budget. Privacy guarantees become tight as the value of 𝜖 becomes 
smaller. 

 

The problem statement is as follows. Given 𝑛 number of users with each user’s adjacency vector 𝜸$ 
given as the input, the output must be a synthetic graph 𝐺 that preserves the coreness (or core numbers) 
of the original graph as much as possible while satisfying 𝜖-edge LDP. 

 

Figure 3: Problem	statement 

 

We compared our model to two prior works: Randomized Response (RR) and Degree-Preserving 
Randomized Response (DPRR). 

In the RR model, each bit in each adjacency vector 𝜸$ is flipped with probability 𝑝 = 	 %
&!'%

. 
A visual depiction is shown below. 



 

 

 

Figure 4: The schematic of Randomized Response (RR) 

The problem with RR is that the graph becomes much denser. A common characteristic among all social 
networks is the sparsity. If each bit of an adjacency vector is flipped with equal probability, the resulting 
vector will have a much higher degree than it originally had. This leads to too much noise in the process. 
The high space complexity for graphs with a lot of users is also a problem. 

DPRR resolves the issues of RR by using edge sampling after flipping each bit in each adjacency vector 
𝜸$ with probability 𝑝 = 	 %

&!'%
. Edge sampling is a technique that disconnects some of the edges of a 

node with a probability derived such that the total degree is maintained. However, the data collector 
must have prior knowledge of users’ degrees. The privacy of users’ degrees could be preserved by 
having the users add Laplace noise to their degree values. Here, one-tenth of the total privacy budget is 
used on protecting the degree values and the remaining budget is used on protecting the adjacency 
vectors. A visual depiction is shown below. 

 

 

Figure 5: The schematic of Degree-Preserving Randomized Response (RR) 

We propose a new mechanism, Degree-Preserving Asymmetric Bit Flipping (DPABF), which preserves 
user degrees without informing the values to the data collector. In our method, the probability of flipping 
bit 1 differs from bit 0 such that the degree is preserved. 

 

Figure 6: The schematic of our proposed mechanism 

Let the adjacency vector and the noisy adjacency vector with degree 𝑑 be 𝛾(<<<<⃗ = (𝑎%, 𝑎), 	 … , 	𝑎*) and 
𝛾(<<<<⃗

" = (𝑎%A,𝑎)A,… , 	𝑎*A), respectively. Let the probability of flipping bit 0 be 𝑝( = Pr(𝑎+A = 1	|	𝑎+ = 0) 
and the probability of flipping bit 1 be 𝑞( = Pr(𝑎+A = 0	|	𝑎+ = 1), respectively. To preserve the degree 
of each user after applying edge-LDP, the following equation must hold for 1 ≤ 𝑑 ≤ 𝑛 − 1. 



 

 

𝑑 = 	(𝑛 − 𝑑)𝑝( + 𝑑(1 − 𝑞() 

The degree constraint equation reduces to 𝑞( =	
*,(
(
𝑝(. 

To satisfy the edge-LDP constraint, the inequalities below must hold for 1 ≤ 𝑑 ≤ 𝑛 − 2. 

𝑒,# ≤
1 − 𝑝(
𝑞('%

≤ 𝑒# 

𝑒,# ≤
𝑝(

1 − 𝑞('%
≤ 𝑒# 

The first approach is to use convex optimization to find the optimal values of 𝑝( and 𝑞( for 1 ≤ 𝑑 ≤
𝑛 − 1. Let the objective function that we need to minimize be 𝐿(𝑨), where 𝑨 is the adjacency matrix. 
Then, 𝐿(𝑨) can be formulated as follows. 

𝐿(𝑨) = J𝑉𝑎𝑟{deg(𝑀(𝒂()|𝑑)}

-*).

(/%

 

Let 𝐵(𝑛, 𝑝) denote the binomial distribution with 𝑛 number of trials and probability of success of 𝑝. 

Since deg(𝑀(𝒂()|𝑑)	~	{𝐵(𝑑, 1 − 𝑞() + 𝐵(𝑛 − 𝑑, 𝑝()}, 

𝑉𝑎𝑟{deg(𝑀(𝒂()|𝑑)} = 𝑞((1 − 𝑞() + 𝑝((1 − 𝑝(). 

Thus, the problem is simplified as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐿(𝑨) = J𝑞((1 − 𝑞() + 𝑝((1 − 𝑝()

-*).

(/%

 

However, this objective function is unsolvable due to its concavity. The optimal solution to this problem 
would reside in the vertices of the feasible region, i.e., the corner points of the bound constraints. Since 
the Hessian matrix of 𝐿(𝑨) is a negative semidefinite matrix, finding the location of all the corners is 
NP-hard. Thus, it is difficult to obtain the optimal solution using the corner point method. 

To solve this problem in a more tractable form, our next approach was to soften the degree constraint. 
Let 𝑝( ≈ 𝑝('% for 1 ≤ 𝑑 ≤ 𝑛 − 2. Then the degree constraint becomes 

𝑞('% =
*,(('%)
('%

𝑝('% ≈
*,(('%)
('%

𝑝(. 

By substituting 𝑞('% in the edge-LDP constraint, we get 

𝑝( =
1

𝑒# + 𝑛 − (𝑑 + 1)𝑑 + 1

	,				𝑞( =
𝑛 − (𝑑 + 1)
𝑛 + 1

𝑝( 

under the assumption that 𝑑 ≤ X*
)
Y. 

By obtaining a closed form expression of the degree constraint using this method, the probabilities 𝑝( 
and 𝑞(  for 1 ≤ 𝑑 ≤ X*

)
Y become deterministic. A user with degree 𝑑  may flip his/her adjacency 



 

 

vector by simply calculating 𝑝( and 𝑞(. The data collector cannot know the values of 𝑝( and 𝑞( 
without prior knowledge of user degrees, only users can. Note that in our approach, the total given 
privacy budget could be fully used on protecting users’ adjacency vectors. 

 

 

 

 

III. Conclusion and Discussion 
1) Research Results                                             
Experiments were conducted based on three widely used baseline datasets. The Facebook dataset 
contains 4039 vertices and 88234 undirected edges. The LastFM Asia Social Network dataset contains 
7624 vertices and 27806 undirected edges. The Anybeat dataset contains 12645 vertices and 67.1k 
undirected edges. For each dataset, the 𝐿% error of core numbers were computed for values of epsilon 
from 0.25 to 7 with an increment of 0.25. The coreness (or core number) of a node is a good metric that 
quantifies the importance of the node in the given graph. Simulation results for Randomized Response 
were omitted due to its extremely poor performance compared to DPABF and DPRR. The average of 
the results of 10 separate experiments were plotted as can be seen below. 

 

https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/feather-lastfm-social.html
https://networkrepository.com/soc-anybeat.php


 

 

 



 

 

It is empirically shown that in high privacy regions (low privacy budget), our proposed model, DPABF, 
can retain users’ core numbers more accurately compared to DPRR. Experimental results for DPRR 
diverged as epsilon went to 0, whereas for DPABF it seemed to saturate. In lower privacy regions 
however, the performance gap seemed too trivial for analysis. 

 

 

Our next experiment tested how accurately the top 𝑁 ranked users in terms of coreness values were 
preserved. In applications such as choosing whom to vaccinate with 𝑁 limited supply of vaccines, you 
may only care about who the top 𝑁 users are, not their exact coreness values. In this scenario, ranking 
is more important than the absolute coreness values. The Facebook dataset was used with values of 𝑁 
ranging from 25 to 400 for this experiment. 

 

 



 

 

 

 



 

 

 

 



 

 

2) Discussion                                                  
According to the experimental results above, our proposed model can retain users’ coreness more 
accurately in comparison to DPRR in high privacy regions. We conjecture that this is because for low 
values of epsilon, the Laplace noise added to the node degrees in DPRR significantly increases the error 
of the degrees, which play a key role in the overall graph structure. Our proposed mechanism, on the 
other hand, will preserve users’ degrees in a probabilistic sense for any given privacy budget, epsilon. 
We believe that the performance gap between our method and DPRR is distinct due to the fact that our 
method doesn’t split up and allocate the privacy budget to the adjacency vectors and degree values, but 
instead fully utilizes the whole budget to the adjacency vectors.  

Note that when we softened the degree constraint, we chose 𝑝( ≈ 𝑝('%  over 𝑞( ≈ 𝑞('% . This is 
because adjacent vectors of social networks are generally sparse. With more elements of 0 than 1 in any 
given adjacency vector, 𝑝( doesn’t vary with 𝑑 as severely as 𝑞( does. Therefore, the inevitable 
error that arises from softening the degree constraint could be lowered by choosing 𝑝( ≈ 𝑝('% instead 
of 𝑞( ≈ 𝑞('%.  

Overall, our proposed model, DPABF is much better than DPRR in low privacy budgets. In higher 
privacy regions, not so much. We believe this is because the Laplace noise added to the node degrees 
in DPRR isn’t relatively noticeable with high values of epsilon. 

An interesting phenomenon that occurred in the Top N experiments is the abrupt performance 
improvement for a specific value of epsilon. The value of epsilon for which the accuracy spiked differed 
for DPABF, DPRR, and RR. The number 𝑁  also affected the location of the cliffs on the plot. 
Nonetheless, our proposed method, DPABF, surpassed DPRR and RR in this experiment. For low values 
of 𝑁, it looks like 10 separate experiments weren’t enough to have a smooth plot, but as 𝑁 increases, 
you can see that the top 𝑁 ranked users were quite robust to LDP mechanisms. The analysis of the cliff 
phenomenon in random graphs is left for future work. 
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