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I. Introduction

1) Topic and Purpose of Research

Differential privacy is a method that helps preserve the privacy of users, more specifically, allowing the
data to be analyzed without leaking users’ sensitive information. Privacy is guaranteed by having the
central server, which has access to all the users’ data, add noise to the data when releasing the data for
analytics. However, when differential privacy is implemented, the users may not trust the central server
and may be reluctant to send their personal data. Local differential privacy (LDP) on the other hand
ensures users’ privacy by having each user send his/her data with noise added. Then, not even the central
server has access to the ground truth data and must rely on noisy data. For example, in case of LDP on
users' height data (Figure 1), the analyzer cannot have precise knowledge of each user’s data but may
guess the average height accurately with many users.
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Figure 1: An example of local differential privacy

LDP can be used to analyze decentralized social networks such as epidemic networks. For example,
with the advent of COVID19 in 2020, we could have used our limited supply of vaccines to minimize
the spread of the disease by analyzing the graph structure of the epidemic network. The next time there
is an epidemic outbreak, it would be much better to survey the local citizens on who they usually meet
face-to-face, spot the potential “super-spreaders” using metrics that quantify node importance such as
coreness, and utilize the limited supply of vaccines based on the analysis. However, citizens may not
be fully honest when conducting the survey in fear of leaking sensitive personal information.

In this paper, we propose a new LDP mechanism for decentralized graphs such that node coreness is
preserved with strong privacy guarantees.

II. Main Subject

1) Research Planning

Let an adjacency vector denote the vector with the value 1 (value 0) as the i-th element when the i-th

corresponding neighbor is connected (is not connected).
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For example, the adjacency vector for user 4 in Figure 2 can be expressed as y4 = (1, 1, 1, 0, 0).

Figure 2: A sample graph

The degree of a node denotes the number of connected neighbors it has. For example, the degree of
user 4 in Figure 2 is 3.

A randomized mechanism M satisfies e-edge LDP if and only if for any two adjacency vectors ¥ and
y' that only differ in one bit, and for any s € range(M), we have
Pr{M(y) = s]
Pr[M(y") = s]

<e€

where € > 0 implies the privacy budget. Privacy guarantees become tight as the value of € becomes
smaller.

The problem statement is as follows. Given n number of users with each user’s adjacency vector y;
given as the input, the output must be a synthetic graph G that preserves the coreness (or core numbers)
of the original graph as much as possible while satisfying e-edge LDP.
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Figure 3: Problem statement

We compared our model to two prior works: Randomized Response (RR) and Degree-Preserving
Randomized Response (DPRR).

In the RR model, each bit in each adjacency vector y; is flipped with probability p =

ef+1’
A visual depiction is shown below.
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Figure 4: The schematic of Randomized Response (RR)

The problem with RR is that the graph becomes much denser. A common characteristic among all social
networks is the sparsity. If each bit of an adjacency vector is flipped with equal probability, the resulting
vector will have a much higher degree than it originally had. This leads to too much noise in the process.
The high space complexity for graphs with a lot of users is also a problem.

DPRR resolves the issues of RR by using edge sampling after flipping each bit in each adjacency vector
1

e€+1’
node with a probability derived such that the total degree is maintained. However, the data collector
must have prior knowledge of users’ degrees. The privacy of users’ degrees could be preserved by
having the users add Laplace noise to their degree values. Here, one-tenth of the total privacy budget is
used on protecting the degree values and the remaining budget is used on protecting the adjacency
vectors. A visual depiction is shown below.

y; with probability p = Edge sampling is a technique that disconnects some of the edges of a

0 1=p 0 v 0

v

Figure 5: The schematic of Degree-Preserving Randomized Response (RR)

We propose a new mechanism, Degree-Preserving Asymmetric Bit Flipping (DPABF), which preserves
user degrees without informing the values to the data collector. In our method, the probability of flipping
bit 1 differs from bit 0 such that the degree is preserved.
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Figure 6: The schematic of our proposed mechanism

Let the adjacency vector and the noisy adjacency vector with degree d be y4 = (a4, a,, ..., a,) and
Ya = (@, @3, ..., @), respectively. Let the probability of flipping bit 0 be pg = Pr(@x = 1| a; = 0)
and the probability of flipping bit 1 be q4 = Pr(a@; = 0| a;, = 1), respectively. To preserve the degree
of each user after applying edge-LDP, the following equation must hold for 1 <d <n —1.
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d= (n—d)pg +d(1—qq)

. . -d
The degree constraint equation reduces to q; = nTpd.

To satisfy the edge-LDP constraint, the inequalities below must hold for 1 <d <n — 2.

1—-pg €

e < <e

9d+1

e‘esp—dﬁef
1-q4+1

The first approach is to use convex optimization to find the optimal values of p; and g4 for 1 <d <
n — 1. Let the objective function that we need to minimize be L(A), where A is the adjacency matrix.
Then, L(A) can be formulated as follows.

5
L(A) = ) Var{deg(M(ap)|d))
a=1

Let B(n,p) denote the binomial distribution with n number of trials and probability of success of p.
Since deg(M(agq)|d) ~{B(d,1—qq) + B(n—d,pa)},

Var{deg(M(ag)|d)} = qa(1 — qq) + pa(1 — pa).

Thus, the problem is simplified as

2]
minimize L(A) = Z qa(1 —qq) + pa(1 —pg)
a=1

However, this objective function is unsolvable due to its concavity. The optimal solution to this problem
would reside in the vertices of the feasible region, i.e., the corner points of the bound constraints. Since
the Hessian matrix of L(A) is a negative semidefinite matrix, finding the location of all the corners is
NP-hard. Thus, it is difficult to obtain the optimal solution using the corner point method.

To solve this problem in a more tractable form, our next approach was to soften the degree constraint.
Let pg = pgs1 for 1 < d < n — 2. Then the degree constraint becomes

_ n—(d+1) . n—(d+1)
Qa+1 = 77 Pa+1 ® — 7 Pa-

By substituting gg444 in the edge-LDP constraint, we get

~ 1 n-(d+1)
pd_ee+n—(d+1)’ da = n+1 Pa
d+1

under the assumption that d < EJ

By obtaining a closed form expression of the degree constraint using this method, the probabilities pg

and q4 for 1<d < EJ become deterministic. A user with degree d may flip his/her adjacency
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vector by simply calculating p; and q4. The data collector cannot know the values of p; and g4
without prior knowledge of user degrees, only users can. Note that in our approach, the total given
privacy budget could be fully used on protecting users’ adjacency vectors.

I1I. Conclusion and Discussion

1) Research Results

Experiments were conducted based on three widely used baseline datasets. The Facebook dataset
contains 4039 vertices and 88234 undirected edges. The LastFM Asia Social Network dataset contains
7624 vertices and 27806 undirected edges. The Anybeat dataset contains 12645 vertices and 67.1k
undirected edges. For each dataset, the L; error of core numbers were computed for values of epsilon
from 0.25 to 7 with an increment of 0.25. The coreness (or core number) of a node is a good metric that
quantifies the importance of the node in the given graph. Simulation results for Randomized Response
were omitted due to its extremely poor performance compared to DPABF and DPRR. The average of
the results of 10 separate experiments were plotted as can be seen below.
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https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/feather-lastfm-social.html
https://networkrepository.com/soc-anybeat.php
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It is empirically shown that in high privacy regions (low privacy budget), our proposed model, DPABF,
can retain users’ core numbers more accurately compared to DPRR. Experimental results for DPRR
diverged as epsilon went to 0, whereas for DPABF it seemed to saturate. In lower privacy regions
however, the performance gap seemed too trivial for analysis.

Our next experiment tested how accurately the top N ranked users in terms of coreness values were
preserved. In applications such as choosing whom to vaccinate with N limited supply of vaccines, you
may only care about who the top N users are, not their exact coreness values. In this scenario, ranking
is more important than the absolute coreness values. The Facebook dataset was used with values of N
ranging from 25 to 400 for this experiment.
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Facebook Dataset, N = 50
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Number of Correct Top 200 Users w.r.t. Core Numbers

Number of Correct Top 400 Users w.r.t. Core Numbers

Facebook Dataset, N = 200

200 A

175 4

150 ~

125 ~

100 -+

75 A

50 A

25 A

—8— DPABF
—&— DPRR
- RR

T T T T

2 3 4 5 6 7
Privacy Budget (epsilon)

Facebook Dataset, N = 400
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2) Discussion

According to the experimental results above, our proposed model can retain users’ coreness more
accurately in comparison to DPRR in high privacy regions. We conjecture that this is because for low
values of epsilon, the Laplace noise added to the node degrees in DPRR significantly increases the error
of the degrees, which play a key role in the overall graph structure. Our proposed mechanism, on the
other hand, will preserve users’ degrees in a probabilistic sense for any given privacy budget, epsilon.
We believe that the performance gap between our method and DPRR is distinct due to the fact that our
method doesn’t split up and allocate the privacy budget to the adjacency vectors and degree values, but
instead fully utilizes the whole budget to the adjacency vectors.

Note that when we softened the degree constraint, we chose p; = pg41 Over qq = qg4+1. This is
because adjacent vectors of social networks are generally sparse. With more elements of 0 than 1 in any
given adjacency vector, p; doesn’t vary with d as severely as g4 does. Therefore, the inevitable
error that arises from softening the degree constraint could be lowered by choosing p,; = pgz4+1 instead

of qq = qa+1-

Overall, our proposed model, DPABF is much better than DPRR in low privacy budgets. In higher
privacy regions, not so much. We believe this is because the Laplace noise added to the node degrees
in DPRR isn’t relatively noticeable with high values of epsilon.

An interesting phenomenon that occurred in the 7op N experiments is the abrupt performance
improvement for a specific value of epsilon. The value of epsilon for which the accuracy spiked differed
for DPABF, DPRR, and RR. The number N also affected the location of the cliffs on the plot.
Nonetheless, our proposed method, DPABF, surpassed DPRR and RR in this experiment. For low values
of N, it looks like 10 separate experiments weren’t enough to have a smooth plot, but as N increases,
you can see that the top N ranked users were quite robust to LDP mechanisms. The analysis of the cliff
phenomenon in random graphs is left for future work.
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